Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
biorxiv; 2024.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2024.04.09.588755

RESUMEN

COVID-19 pandemic has highlighted the need of antiviral molecules against coronaviruses. Plants are an endless source of active compounds. In the current study, we investigated the potential antiviral effects of Hypericum perforatum L. Its extract contained two major metabolites belonging to distinct chemical classes, hypericin (HC) and hyperforin (HF). First, we demonstrated that HC inhibited HCoV-229E at the entry step by directly targeting the viral particle in a light-dependent manner. While antiviral properties have already been described for HC, the study here showed for the first time that HF has pan-coronavirus antiviral capacity. Indeed, HF was highly active against Alphacoronavirus HCoV-229E (IC50 value of 1.10 {micro}M), and Betacoronaviruses SARS-CoV-2 (IC50 value of of 0.24 to 0.98 {micro}M), SARS-CoV (IC50 value of 1.01 {micro}M) and MERS-CoV (IC50 value of 2.55 {micro}M). Unlike HC, HF was active at a post-entry step, most likely the replication step. Antiviral activity of HF on HCoV-229E and SARS-CoV-2 was confirmed in primary human respiratory epithelial cells. Furthermore, in vitro combination assay of HF with remdesivir showed that their association was additive, which was encouraging for a potential therapeutical association. As HF was active on both Alpha- and Betacoronaviruses, a cellular target was hypothesized. Heme oxygenase 1 (HO-1) pathway, a potential target of HF, has been investigated but the results showed that HF antiviral activity against HCoV-229E was not dependent on HO-1. Collectively, HF is a promising antiviral candidate in view of our results and pharmacokinetics studies already published in animal models or in human.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave
2.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.07.09.451770

RESUMEN

The SARS-CoV-2 outbreak has highlighted the need for broad-spectrum antivirals against coronaviruses (CoVs). Here, pheophorbide a (Pba) was identified as a highly active antiviral molecule against HCoV-229E after bioguided fractionation of plant extracts. The antiviral activity of Pba was subsequently shown for SARS-CoV-2 and MERS-CoV, and its mechanism of action was further assessed, showing that Pba is an inhibitor of coronavirus entry by directly targeting the viral particle. Interestingly, the antiviral activity of Pba depends on light exposure, and Pba was shown to inhibit virus-cell fusion by stiffening the viral membrane as demonstrated by cryo-electron microscopy. Moreover, Pba was shown to be broadly active against several other enveloped viruses, and reduced SARS-CoV-2 and MERS-CoV replication in primary human bronchial epithelial cells. Pba is the first described natural antiviral against SARS-CoV-2 with direct photosensitive virucidal activity that holds potential for COVID-19 therapy or disinfection of SARS-CoV-2 contaminated surfaces.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA